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Abstract

Previously published cosolvency models are critically evaluated in terms of their ability to mathematically correlate
solute solubility in binary solvent mixtures as a function of solvent composition. Computational results show that the
accuracy of the models is improved by increasing the number of curve-fit parameters. However, the curve-fit
parameters of several models are limited. The combined nearly ideal binary solvent/Redlich–Kister, CNIBS/R–K,
was found to be the best solution model in terms of its ability to describe the experimental solubility in mixed
solvents. Also presented is an extension of the mixture response surface model. The extension was found to improve
the correlational ability of the original model. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Solubilization of a poorly water-soluble drug
has an important role in the formulation of liquid
pharmaceutical preparations. There are a number
of methods which are used to affect the solubility.

One of the most effective and readily available
methods is to add a water miscible cosolvent
which is called cosolvency. Today, in order to
prepare a suitable drug formulation, the optimum
concentration of the cosolvent, is obtained by
experimental measurements. However, this
method is time-consuming and costly. Cosolvency
data modeling provides not only a means of
screening experimental data sets for possible out-
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liers in need of redetermination, but also facili-
tates interpolation at other points falling between
the measured data. Using this technique, the re-
searcher can predict the optimum concentration
of the cosolvent. Various solution models have
been published in the pharmaceutical and chemi-
cal literature for mathematical representation of
solubility data in binary solvents. The main objec-
tive of the current communication is to critically
compare the accuracy of the various cosolvency
models in terms of their ability to describe solute
solubility as a function of cosolvent volume frac-
tion.

2. Presentation of various cosolvency models
considered

The previously published models are as follows:
Algebraic mixing rule or log-linear model, LL

(Yalkowsky and Roseman, 1981)

ln Xm= fc ln Xc+ fw ln Xw (1)

where Xm is the mole fraction solubility of the
solute, fc and fw denote the initial volume frac-
tions of cosolvent and water in the absence of the
solute, and Xc and Xw refer to the solute mole
fraction solubility in the neat cosolvent and water,
respectively. Substitution of 1− fc for fw in Eq.
(1) gives the familiar log-linear equation:

ln Xm= ln Xw+ (ln Xc− ln Xw)·fc (2)

ln Xm=Intercept+Slope·fc (3)

Water–cosolvent systems encountered in the
pharmaceutical industry often exhibit highly non-
ideal behavior, and they do not necessarily con-
form to the underlying assumptions inherent in
the log-linear equation (Li and Yalkowsky, 1994).
In such cases the experimental drug solubility can
differ significantly from the calculated value based
upon the log-linear equation.

The excess free energy models, EFE (Williams
and Amidon, 1984), which have additional terms
to describe deviations from the log-linear equa-
tion, are:

ln Xm= fc ln Xc+ fw ln Xw+A1–3 fc fw(qs/qc) (4)

ln Xm= fc ln Xc+ fw ln Xw

−A1–3 fc fw(2fc−1)(qs/qc)

+2A3–1 f c
2fw (qs/qw)+C2 fc fw (5)

ln Xm= fc ln Xc+ fw ln Xw

−A1–3 fc fw(2fc−1)(qs/qc)

+2A3–1 f c
2 fw(qs/qw)+3D13 f c

2fw
2 (qs/qw)

+C3 fc fw
2 (qs/qw) +C1 f c

2 fw(qs/qc) (6)

where A1–3, A3–1, C2, D13, C3 and C1 are so-
lute–solvent or solvent–solvent interaction terms.
The symbols qc, qs and qw represent the molar
volumes of cosolvent, solute and water, respec-
tively.

These three equations can however be sim-
plified to the following forms, respectively:

ln Xm= fc ln Xc+ fw ln Xw+K1 fc fw (7)

ln Xm= fc ln Xc+ fw ln Xw+K1 %fc fw+K2% f c
2 fw

(8)

ln Xm= fc ln Xc+ fw ln Xw+K1 %%fc fw+K2 %%f c
2 fw

+K3 %%fc fw
2 +K4 %%f c

2 fw
2 (9)

where K1= [A1–3(qs/qc)], K1%= [A1–3(qs/qc)+C2],
K2%=2[A3–1(qs/qw)−A1–3(qs/qc)], K1% %= [A1–3(qs/
qc)], K2% %=2[A3–1(qs/qw)−A1–3(qs/qc)]+C1(qs/qc),
K3% %=C3(qs/qw) and K4% %= [3D13(qs/qw)].

Mixture response surface methods, MRS (Och-
sner et al., 1985), are statistically based models
which were proposed for predictive purposes.
These models are as follows:

ln Xm=b1 f c %+b2 fw %+b3 f %c %fw % (10)

ln Xm=b1% f c %+b2 %fw %+ (b3 %/f c %)+ (b4 %/fw %)
(11)

ln Xm=b1 %%f c %+b2 %%fw %+ (b3 %%f c %)+ (b4 %%/fw %)

+b5 %%f c %fw % (12)

in which b1 thru b3, b1% thru b4% , and b1% % thru
b5% % are models’ curve-fit parameters, and fc%=
0.96fc+0.02 and fw%=0.96fw+0.02.

One can calculate the deviated solubility values,
from the log-linear equation, by using the mixture
response surface method. The extended equations,
EMRS, are given by:

ln Xm= fc ln Xc+ fw ln Xw+a1 fc+a2 fw+a3 fc fw

(13)
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ln Xm= fc ln Xc+ fw ln Xw+a1 %fc+a2 %fw

+ (a3 %/fc)+ (a4 %/fw) (14)

ln Xm= fc ln Xc+ fw ln Xw+a1 %%fc+a2 %%fw

+ (a3 %%/fc) + (a4 %%/fw)+a5 %%fc fw (15)

where a1 thru a3, a1% thru a4% , and a1% % thru a5% %
are the model coefficients which are evaluated by
regressing the term [ln Xm– fc ln Xc– fw ln Xw] ver-
sus fc, fw, 1/fc, 1/fw and fcfw using a no intercept
regressional analysis. The latter two equations are
applicable for 0B fcB1 and there is no need to
change fc and fw into fc% and fw%.

Combined nearly ideal binary sol6ent/Redlich–
Kister equations, CNIBS/R–K (Acree et al.,
1991):

ln Xm= fc ln Xc+ fw ln Xw+ fc fw S Wi( fc– fw)i

(16)

where Wi stands for the model constants, which
are calculated via regressing [ln Xm– fc ln Xc–
fw ln Xw] versus fcfw( fc– fw)i terms using a no inter-
cept analysis (Jouyban-Gharamaleki and Hanaee,
1997). The CNIBS/R–K equation has been
shown to accurately describe the solubility behav-
ior of anthracene and pyrene in a large number of
binary organic solvent mixtures with i ranging
from i=0 to i=3 (Acree, 1994, 1995a,b;
Zvaigzne and Acree, 1995; Powell et al., 1996,
1997). In the case of water–cosolvent mixtures
one or two additional parameters may be needed
(Barzegar-Jalali and Jouyban-Gharamaleki,
1996). The CNIBS/R–K method is also able to
describe multiple solubility maxima, solubility at
various temperatures (Jouyban-Gharamaleki and
Acree, 1998) and solubility of structurally related
drugs in mixed solvents (Jouyban-Gharamaleki et
al., 1998).

Modified Wilson model, MW (Acree et al.,
1991):

ln(X s
id/Xm)

=1−{ fc[1− ln(X s
id/Xc)]/[ fc+ fwLcw

adj]}

−{ fw[1− ln(X s
id/Xw)]/[ fcLwc

adj+ fw]} (17)

or in simplified form, SMW (Jouyban-Ghara-
maleki, 1998):

− ln Xm=1−{ fc [1+ ln Xc]/[ fc+ fwlcw
adj]}

−{ fw[1+ ln Xw]/[ fclwc
adj+ fw]} (18)

where X s
id denotes ideal mole fraction solubility

of the solute, Lcw
adj, Lwc

adj, lcw
adj and lwc

adj are ad-
justable parameters of the models which can be
evaluated via least-quares analysis. Eq. (17) has
been used frequently to describe solubility in non-
aqueous mixed solvents and several studies have
shown that the MW model is comparable to Eq.
(16) in terms of its ability to mathematically de-
scribe measured anthracene and pyrene solubili-
ties (Acree, 1994, 1995a,b; Zvaigzne and Acree,
1995; Powell et al., 1996, 1997). For water–cosol-
vent systems significantly larger deviations are
observed between the experimental solubilities
and values back-calculated based upon Eq. (17).
Jouyban-Gharamaleki (1998) recently proposed
Eq. (18) for solutes dissolved in water–cosolvent
mixtures. The author showed that Eq. (18) pro-
vided a reasonably accurate mathematical descrip-
tion of solute solubility behavior in binary
aqueous–organic mixtures.

General single models, GSM (Barzegar-Jalali
and Jouyban-Gharamaleki, 1997)

ln Xm=L0+L1 fc+L2 f c
2+L3 f c

3+L4 f c
4 + ...

(19)

ln Xm=S Li( fc) j (20)

where L0 thru L4, and Lj denote the model
constants, which are determined by least-squares
analysis. Although the model has been used as an
empirical equation (Wu and Martin, 1983;
Tarantino et al., 1994), a theoretical justification
was provided by comparing the mathematical
form to equations derived from more theoretically
based solution models (Barzegar-Jalali and Jouy-
ban-Gharamaleki, 1997).

3. Data and methods

The published solubility data in binary
aqueous–organic solvent mixtures, containing
more than ten experimental data points, were
collected from the pharmaceutical literature. Wa-
ter is the main solvent in biological and pharma-
ceutical sciences. Some of the selected cosolvents,
such as dioxane, are toxic and are not used in
pharmaceutical formations, but they can be used
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Table 2
Mean and (9 ) standard deviation of % deviation values for the models with respect to the total number of constant terms

CNIBS/R-K SMW MWConstantsa LL EFE GSMMRS EMRS

–––2 –49.66920.53 – – –
22.25914.53 — —3 – 15.8999.6522.25914.54 15.8999.65 –

9.0695.6228.41919.447.7795.374 – 10.7297.6310.7297.64 18.7198.92 –
5.9294.16 — —5 8.5394.96– – 6.3393.97 9.8396.63

5.2292.83——6 – 4.2392.695.9294.16 – 10.1997.16
3.0691.74 — —7 5.0692.65– – – 4.3592.69

a Defined as the sum of the number of curve-fit coefficients. The number was increased by two if the equation required a prior
knowledge of the solute solubilities in the two neat solvents.

as model cosolvents. The specific solutes and sol-
vent systems selected, along with the literature
references, are listed in Table 1.

To critically assess the accuracy of the various
models to mathematically represent solubility be-
havior in water–cosolvent mixtures, the experi-
mental data are fitted to the models and the
models’ curve-fit coefficients are calculated. In the
case of Eqs. (17) and (18) the coefficients are
taken from previous work (Jouyban-Ghara-
maleki, 1998). Differences between the experimen-
tal solubilities and back-calculated values,
expressed as percentages:

%Dev.= (100/N) S � Xm
cal−Xm

exp � /Xm
exp (21)

are taken as the measure of the model’s descrip-
tive ability (Barzegar-Jalali and Jouyban-Ghara-
maleki, 1996). The summation extends over the
number of experimental data points in each set,
N. The mean of %Dev. is calculated as a compari-
son criterion.

Analysis of variance and Duncan’s multiple
range test are used to assess the statistical signifi-
cance between means of %Dev. for the various
models considered. The ability of the models to
mathematically describe the experimental data are
compared taking into consideration both the
number of curve-fit parameters and number of
experimental data points that must be determined
in order to use each model. Equal number of total
constant and maximum number of total constant
comparisons were made. To us this seems to be a

fair method to compare the different mathemati-
cal representations in that several models use the
calculated coefficients to describe the actual mole
fraction solubilities, whereas other models have a
much simpler task of describing only the devia-
tions from an idealized volume fraction average of
logarithm mole fraction solubilities in the two
pure solvents. The latter models do require as
input values the measured solubilities in the two
pure solvents, and this then increases by two the
total number of constants that must be evaluated
from the available experimental data. All calcula-
tions were performed by the statistical package
for social sciences (SPSS) in a Windows environ-
ment.

4. Results and discussion

Table 2 shows the mean and standard deviation
values of %Dev. for various models with respect
to the total number of constants contained in
each model. Careful examination of the numerical
entries reveals that the accuracy of the mathemat-
ical representation improves as more curve-fit
parameters are introduced. There are two excep-
tions to this observation, i.e., MRS and EMRS
models with four curve-fit parameters. The reason
for this exception is that the mathematical form of
both models does drastically change with the in-
troduction of the fourth curve-fit coefficient. The
term b3 fc%fw% is dropped from the three-parameter
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Fig. 1. Duncan’s multiple range test for the various cosolvency models with respect to the number of constant terms.

representation of the MRS model and is replaced
by the two additional terms (b3% /fc%)+ (b4% /fw%).
Similarly, in the EMRS model a3fcfw is replaced
by (a3% /fc)+ (a4% /fw). The other solution models
simply introduce the additional term to the math-
ematical form already present. For these latter
models the additional term must reduce the devia-
tions between the observed and back-calculated
solute solubilities. If not, the additional curve-fit
coefficient will equal zero (or nearly zero) as
calculated by the least-squares regressional analy-
sis.

Several models such as LL, EFE and MRS
have only two, three, four or five constants,
whereas equations derived from other models,
such as the CNIBS/R–K and GSM, can be ex-
tended indefinitely in order to provide a more
accurate mathematical representation. However,
it is obvious from this that more experimental
determinations will be needed when the curve-fit
parameters are increased. The most accurate
mathematical representations for three, four, five
or more than five constant expressions are
achieved by GSM, SMW and CNIBS/R–K mod-
els. Fig. 1 depicts the results of analysis of vari-
ance and Duncan’s multiple range test for the
models with respect to the number of constants
contained in the equation. It is suggested that the

difference between the descriptive ability of the
models as underlined are not significant.

The %Dev. for select models using the maxi-
mum number of constants are listed in Table 3. A
second comparison is performed for the models
without considering the number of constants.
From this standpoint CNIBS/R–K is the most
accurate model, which is followed by EMRS,
GSM, EFE, MRS and SMW. The results of
Duncan’s analysis is shown in Fig. 2. Two of the
seven-constant models, i.e. CNIBS/R–K and
EMRS, provide the most accurate correlation and
in this case the accuracy differences between these
models and the other listed models are significant
(pB0.01).

The ability of the CNIBS/R–K to accurately
describe solute solubility in binary organic solvent
mixtures (Acree et al., 1991; Acree, 1994, 1995a,b;
Zvaigzne and Acree, 1995; Powell et al., 1996,
1997) and aqueous–organic solvent systems
(Acree, 1996; Barzegar-Jalali and Jouyban-Ghara-
maleki, 1996) is shown. This particular solution
model has a theoretical basis (Acree, 1992) and
can be applied to describe other situations such as
solubility in ternary mixed solvents (Jouyban-
Gharamaleki and Acree, 1998) or solubility of
structurally related drugs in binary solvents (Jouy-
ban-Gharamaleki et al., 1998). In comparison the
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Table 3
Best fit % deviation of the different models for the 30 data sets studied

SMWb GSMEMRSSNa CNIBS/R–KEFE MRS

9.93 4.591 3.07 11.86 13.35 2.88
2.2211.362.002 9.002.19 8.25

2.19 3.763 3.73 1.74 1.94 3.60
1.83 4.524 5.02 2.89 3.30 5.08

7.213.61 5.655 4.127.69 5.50
2.78 3.236 3.67 5.47 2.87 2.18

8.4711.837.277 8.6211.32 10.03
7.33 9.518 14.57 3.55 5.02 9.74
5.51 10.429 16.97 13.77 6.30 12.77

7.755.38 5.7910 7.339.74 8.84
3.64 3.48 6.04 6.6511 10.16 6.88

7.215.824.8612 5.878.70 8.31
4.22 7.5413 11.28 3.59 3.61 7.92
3.80 11.0914 12.53 4.99 4.75 7.49

1.870.80 1.9015 0.621.81 2.28
4.75 4.4816 5.90 1.96 2.13 2.89

6.685.863.5017 3.606.57 3.61
2.45 3.57 7.52 4.5118 4.87 2.96

2.67 3.032.9819 3.123.04 3.87
0.67 1.9620 1.44 1.55 1.85 1.51

1.882.891.5921 2.171.90 2.41
0.83 5.8122 1.39 3.26 1.68 2.21
1.09 9.7523 4.65 5.85 2.98 4.84

29.382.72 6.2524 4.684.04 18.47
5.36 3.0125 3.03 7.23 3.13 1.63

5.1911.314.1026 7.515.08 9.35
1.42 3.2927 1.99 5.05 2.01 2.00
1.49 11.8428 3.21 9.26 3.97 3.32

3.703.32 5.9829 3.283.65 6.80
2.60 15.1330 4.44 10.26 4.835.53

4.35 5.06Mean 3.065.92 7.776.33

a SN is the system number.
b % deviation values are taken from an earlier paper (Jouyban-Gharamaleki, 1998).

MRS and EMRS models are strictly empirical in
nature. The CNIBS/R–K and EFE equations do
have a common theoretical basis, and equations
based upon each model can be readily trans-

formed into the GSM Eq. (20) (Barzegar-Jalali
and Jouyban-Gharamaleki, 1997). The CNIBS/
R–K model, because of the suitable arrangement
of the independent variables, produces a slightly
more accurate mathematical representation of so-
lute solubilities for the 30 systems considered in
this study. Published papers (Jouyban-Ghara-
maleki and Acree, 1998; Jouyban-Gharamaleki et
al., 1998) have compared the predictive ability of
the CNIBS/R–K model to various modified
forms of the Hildebrand and extended Hildebrand
equations. The above analyses suggest that
CNIBS/R–K as being the best cosolvency model.

Fig. 2. Duncan’s analysis for the various cosolvency models
without considering the number of constant terms.
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